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The relative concentrations of configurations of pairs of monovacancies at close 
separations in a hard-disk hexagonal lattice have been calculated using cell-cluster 
theory involving up to fourth-order clusters. The variation in the results with the order 
of cluster considered is small and decreases as the distance of separation of the vacancy 
pair increases. The results show that the interaction potential due to the configurational 
entropy of the various pair assemblies is small for all pairs in comparison with the di- 
vacancy (adjacent vacant sites). 

INTRODUCTION 

The calculations presented in this paper represent a continuation of a series of 
investigations into the properties of rigid-disk and hard-sphere systems. Previous 
papers have dealt with the effects of monovacancies on the elastic constants of 
rigid-disk solids [l], the equilibrium concentrations of vacancy-type defects in such 
solids [2] and the free energy of formation of these defects [2]. Investigations are 
also being made of the kinetic properties of vacancies in hard-sphere crystals. 
Bennett and Alder have investigated the relaxation times of monovacancies in 
hard-sphere crystals [3], and more recently have extended their calculations to 
include a calculation of the persistence of divacancy motion [4]. 

The calculation of the thermodynamic properties of rigid-disk and hard-sphere 
assemblies is valuable for several reasons. The convergence of the cell cluster 
theory can be tested. The convergence, in turn, indicates whether or not the 
thermodynamics property considered can be calculated with sufficient accuracy 
by considering cell clusters containing a reasonably small number of particles. 
In addition, the properties of hard-sphere assemblies bear some similarity to those 
of the inert gas solids and experimental data for such systems [5] have been 
discussed in terms of hard-sphere models [2]. More importantly, the work on 
hard-sphere systems can be extended by the introduction of realistic interparticle 
potentials. 
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The next phase of this investigation will involve the introduction of the types 
of interatomic force laws that have been found to be suitable in metals and metallic 
solid solutions. The ensuing models for metals containing lattice defects such as 
monovacancies, vacancy clusters, interstitial atoms, and solute atoms have the 
inherent advantage of giving directly expressions for the free energy of the solid 
as an explicit function of volume. It has been recently pointed out by Wagner [6] 
that most of the available thermodynamic data for solid solutions refers to constant- 
pressure experiments in which the volume of the solid phase varies, at a given 
temperature, with solute concentration. Most of the statistical theories of solid 
solutions, as has been pointed out in a recent review [7], are constant-volume 
models in which the chemical potential of the solute species is calculated from the 
Helmholtz free energy at a constant volume. Such models may be applicable to 
experimental data measured at constant pressure provided that the variation of 
the elastic properties of the solution with solute concentration is known at high 
temperatures, but such data are scant. 

In the present paper the equilibrium concentrations of monovacancy pairs at 
various separation in the lattice (p,) and monovacancies (pJ are calculated and 
used to evaluate an effective equilibrium constant, K = pz/p12. A reduced form 
of K provides a measure of the effective interaction potential between vacancies 
at the specific distance of separation considered. The results were calculated 
using first-, second-, third-, and fourth-order cell clusters, so that the variation 
of K with cluster order could be determined. 

THEORY 

We consider a set of N identical, nonoverlapping rigid disks of diameter a 
confined to a planar area A. Let A be covered by a regular hexagonal array of A4 
lattice points such that 

where Nmax is the maximum number of disks which can be placed in the area A. 
The only potential prevalent in this system is that which allows no overlapping 
of the disks. The microcanonical partition function for this system at temperature 
T can therefore be written as [8] 

where +(P, 4) = +(rDg - a) is a unit step function, rpa represents the distance 
between the centers of disks p and q, h = (h2/27rmkT)* is the mean thermal De 
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Broglie wavelength and a is the distance between adjacent lattice sites. The unit 
step function $(pq) is defined as follows [9]: 

4(P, 4) = 0 for r,, < a 

4(PT 4) = 1 for rug , a. > 

The equilibrium constant K for the reaction in which two monovacancies at 
infinite separation form a vacancy pair of some specific close configuration can be 
calculated using cell cluster theory. This “reaction” can be represented by the 
equation 

where h4, represents a monovacancy. 
The specific close separations of monovacancies we will consider here are 

43a, 2a, d7a, and 3a. These are the closest possible separations of two mono- 
vacancies which do not form a divacancy. These configurations are illustrated in 
Fig. 1. If the magnitude of this constant is greater than unity, the final close 
separation configuration of the monovacancies is the more stable configuration. 

d =2a 

d =fia d =3a 

FIG. 1. Configurations of monovacancies to be considered showing only nearest neighbor 
disks to the configuration; d is the distance separating the centers of the monovacancies; a is the 
distance between adjacent lattice sites. 
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On the other hand, if the constant turns out to be less than unity, this means that 
the two monovacancies at infinite separation is the most stable configuration. 
These constants can be considered to be a measure of the relative stability of, or 
of an effective potential between, two monovacancies as a function of their distance 
of separation. The larger the equilibrium constant, the more stable is the confi- 
guration of monovacancies considered. If the constant is greater than one, then 
we have an effective attraction between the two monovacancies; if the constant 
is less than one, we have an effective repulsion between the two monovacancies. 
Since the system under consideration has only a rigid-disk type potential which 
allows no overlap of disks, the effective repulsion or attraction found between 
two monovacancies is due only to the configurational entropy of the various 
configurations considered. 

The constants K are calculated using the following procedure. We introduce 
into the lattice m, monovacancies and m2 pairs of monovacancies at one of the 
specific close separations considered. We then write out the Helmholtz free energy 
of this system utilizing cell cluster theory. By minimizing this expression with 
respect to both m, and m2 individually and setting the two results equal to zero, 
we can calculate p1 = m,/M, the equilibrium concentration of monovacancies at 
infinite separation, and pz = m,/m, , the equilibrium concentration of pairs of 
monovacancies at the specific close separation considered. From these results 
K = pz/p12 is determined. 

As an example of how we can write out the Helmholtz free energy, let us consider 
a system with m, monovacancies and m2 configurations of two monovacancies 
separated by 4% (see Fig. 1). We identify clusters using two subscripts i and j; 
i denotes the number of disks in the cluster andj the particular configuration of 
the disks. The i, ,j designations are associated with the clusters they represent in the 
cluster table which follows (Table I). F,,j will represent the Helmholtz free energy 
of the cluster under consideration. The u’~,~ are correction factors introduced by 
higher-order clusters due to the correlated motion of their component disks. 
The Helmholtz free energy of the whole system through two-particle clusters is 
given as follows: 

FNv = - kTln W + (N -- 6mI - lOm,)Ii,,, + (6m, + 8m,)F,,, 

t 2m,FIs, + (3N - 27m, - 43m,)w,,, i 6m,w,,, t 12m,w,,, 

i 6mlw2,3 + 8m2w2sl + 16m2w2,, + 6m2w2,, 

-!- 4m2w2,, + 2m2w2,, + m2w2,10 . (2) 

The detailed prescription for writing out this free energy has been given previously 
[2]. In Eq. (2), W represents the number of different ways the N disks, m, mono- 
vacancies and m2 configurations of two monovacancies can be arranged on the 
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TABLE 1” 

Perfect Lattice Clusters 

Cluster 
graphb 

-- 

0 

0-e 

i, j X’F,., -= I,,, w,,j:kT gt.,’ YL,‘r L.3? B Tl .if etJg 

I,2 3.00000000 - 1.09861229 1 6 1 10 2 

234 9.04166667 -0.00461895 3 24 6 37 12 
-~.~~ 

Clusters Incorporating One or More Monovacancies 

Cluster 

graph i,i X”F,,j = I,,, w,,,:kT 

0 
e-0’ 

Fi 
0-O 

I,1 

1,3 

2, 1 

2,2 

2, 3 

2, 8 

2,9 

2, 10 16.87500000 - 0.05324451 

3.50000000 

4.oOOOOOO0 

10.79166667 

10.75000000 

12.91666667 

16.00000000 

12.45833333 

-- 1.25276297 6 8 

~ 1.38629436 2 

-0.02739897 6 8 

-0.02353050 12 16 

-0.05299253 6 6 

-0.13353139 4 

-0.03748309 2 

a Blanks in the table and quantities not identified for particular clusters are to be assigned the 
value of zero. 

b l , denotes rigid disk; o, denotes vacancy. 
c g,,j-the number of different ways perfect lattice cluster i, j can be placed on the lattice divided 

by the number of lattice sites M. 
d Y*,~ - the number of different ways perfect lattice cluster i, j can be placed on the lattice so 

that at least one of its component disks is adjacent to a monovacancy. 
e /& - the number of different ways the perfect lattice cluster i, j can be placed on the lattice 

so that one of its component disks lies on the lattice site of a monovacancy. 
f 7i j - the number of different ways the perfect lattice cluster i, j can be placed on the lattice 

so that it lies adjacent to one or both of two monovacancies separated by d\/3a. 
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M lattice sites. The exact form of Eq. (2), of course, depends on the specific 
configuration of the m2 pairs of monovacancies we consider. Equation (2) can be 
made more exact by extending it to include higher-order clusters. In the case of the 
configuration of monovacancies separated by d5a, we extend our results out to 
four-particle clusters. 

The derivatives with respect to m, and m2 of Eq. (2) can easily be determined 
once we have established the form of IV. The total number of lattice sites in our 
system is given by 

~4 = N f C kmksL, 
k.1 

where m,,, denotes the number of vacancy configuration of type I involving k 
lattice sites. Thus, m2,1 can denote either the number of divacancies in the system 
or the number of one of the configurations of pairs of monovacancies considered, 
depending on the value of the configuration subscript I. 

Consequently, W is given in general by 

w = [M - CU (k - 1) md! n n kdmk~L 
N! k I mk,,! ’ 

where g,,, is the number of different orientations of the (k, /)-type vacancy con- 
figuration on the lattice divided by M. Applying Stirling’s formula to Eq. (4) 
we find 

In W = C (mk,l In gk,Z - mk,Z ln(mk,l/M) + mk,,L>. (5) 
k.1 

In this simple illustrative example we will let m 2,1 equal m2 (i.e., I = 1 represents 
the configuration of two monovacancies separated by the distance 2/Sa). Note 
also that m,,, is identical to m, . 

9 B,,j - the number of ways the perfect lattice cluster i, j can be placed on the lattice so that 
at least one of its component disks lies on one of two monovacancies separated by &a. 

h S,,j - the number of different ways the cluster i, j, which incorporates a monovacancy, is 
found about a monovacancy. 

i E,,~ - the number of ways the cluster i, j, which incorporates a monovacancy or two mono- 
vacancies separated by d3a, is found about two monovacancies separated by v’\/3a. 

Equation (2) is derived from the data presented in the table using the formula 

In using this formula, let w~,~ = F,,, and E+.~ = F,,, . This formula is similar to those discussed 
in Ref. [2]. 
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Differentiating FN with respect to WI, and setting the result equal to zero gives 

kTln (m,/M) - 6Fl,2 + 6F,,, - 27w,,, + 12143,~ + 6145, = 0. (6) 

Note that the term --In g,,, has been omitted from this expression. These 
terms only affect the final K values in the form of integral multiplicative constants, 
multiplying a series of factors which arise from considering the correlations in cell 
cluster theory. Thus, the K values which are derived here are really reduced 
K values from which the g,,, factors have been consistently omitted. 

Using Eq. (6) and noting that 

h2 = --kTln P1,2 , 

Flsl = -kTln Q,,, , 
(7) 

where QiSj is the partition function for the cluster i, j, we see that 

PI = ml/M = <Ql.l/Ql,2)“(Yz”,l Yt,t Y&d Y&), (8) 

where 
Yi,j = exp(--wJkT}. (9) 

TABLE II 

Separation 
_____ 

da 

2a 

Order of Multiplicative constant Total value of K through 
cluster of given cluster order given cluster order 

1 0.959600166 0.959600166 
2 1.102245669 1.057715128 

3 0.866034233 0.916017510 
4 1.125478912 1.030958391 

1 0.979591837 0.979591837 
2 1.019477914 0.998672243 
3 1.033767083 1.032394491 

da 

3a 

1 1.000000000 1.000000000 

2 0.981846376 0.981846376 
3 0.982915012 0.965071543 

1 1.000000000 1.000000000 
2 0.993112804 0.993112804 
3 0.993530540 0.986687900 
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Similarly we can derive an expression for p2 by differentiation with respect to IYZ~ 
We obtain 

p 2 3 Y” 21 Y’” 22 Y”, 23 Y*. 28 Y 2.10 = = Ql”.lQ,“., Y2, 29 

M Q:$ r3 2.4 

Therefore, the expression for K is given by 

(11) 

In an analogous way, expressions for K corresponding to vacancies at different 
final separation distances can be found. 

In Table II we list the values of K that have been calculated for the four given 
separations. For the separation da, we have considered through four particle 
clusters, for all other separations only through three particle clusters have been 
considered. 

DISCUSSION 

The results for the smallest vacancy separation of d/5a show that the value of K 
oscillates about unity as each successive approximation is corrected by multiplica- 
tion by the next highest order contribution. Rapid convergence is not apparent 
although the magnitude of the variations are small. This indicates that the contri- 
butions from higher-order clusters are significant and must be taken into account 
when the properties of closely spaced pairs are being considered. 

Table II shows that the contributions from successive orders of clusters for 
configurations involving the larger separations are much smaller than those 
pertaining to the pairs at closer separations. Monovacancies at close distances 
of separation are surrounded by relatively more clusters which have a greater 
free area available to their component disks. Such clusters make a greater contri- 
bution to correlation correction factors than the corresponding clusters adjacent 
to only one monovacancy, and result in multiplicative constants whose magnitude 
of deviation from I .O is greatest for configurations representing the closest 
separations of monovacancies. For the configurations of greatest separations 
convergence is apparently not rapid, at least not in the first few terms we consider? 
but the oscillatory behavior is no longer evident at separations greater than 2a. 

The fact that all the estimates of K derived by considering one through four- 
particle clusters are close to unity indicates that the effective attractive or repulsive 
interaction due to the variation in configurational entropy is very small. Further- 
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more, we conclude that in rigid-disk solids there is no strong interaction between 
monovacancies which manifests itself in an examination of the lower-order cluster 
contribution to K. 

It is felt that sufficient information is known about the properties of rigid-disk 
and hard-sphere systems so that work can proceed on the simulation of metals 
containing lattice defects by the application of cell cluster theory to three-dimen- 
sional systems whose particles are coupled by finite interaction potentials of the 
kinds that have been found useful in the computer simulations of metals containing 
lattice defects [I O-l 31. 
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